

 On the target: a key role: driving spot. On the plasma volume: Interaction with electrons: helicoidal traject around field B (ions practically not directly affected). higher ionization efficiency (+ dissociation). plasma Confinement. higher ion bombardment. 			Effe						
Monoria fald Electron Plasma emission Average Titanium Plasma	 On the ta On the p around f 	arget: a ke lasma volu ield B (ior higher ior plasma C higher ior	ey role ume: 1 ns pra- nizatio confine n bom	e: drivir Interac ctically n effici ement. bardmo	ng spo tion w not di ency (ent.	t. ith electro rectly affe + dissocia	ons: helicoid ected). ation).	lal trajectory	
Wagnere nere inclution risking included and any included and any included any inclu	Magnetic field	Electron temperature (eV)	Plasma emission			Average	Titanium	Plasma density	
(Gauss) temperature charge per vapor vapor (eV) Ti^+ N^{2+} N^+ lon (e) ionization (%) (×10 ¹⁶ M^-	lagnetic field		Ti+	N^{2+}	N^+	ion (e)	ionization (%)	(×10 ²⁶ M ⁻³)	
Conventional arc (0) 2.5 1.0 0.2 0.0 1.6 80 0.8 Enhanced arc (1450) 25.0 3.4 9.4 1.1 2.08 99 1.7	(agnetic field Jauss)	(eV)							

L	UNIVERSITA	U T DE BARCEL	.ONA	1_			Depart	ament	o de Física Apli	cada y	Óptica
		B			Effe	ects of Pro	essure:	De	nsity and mac	size rod	of art
			Analan	0.1 Pa otri 0.33 Pa otri	10 0.1 1 01 01 01	20 0.30 Tim 40 0	5 Pa an iller su 2 Pa an iller su	জ 0.5 Pa জ 1.2 Pa	0.10 Vir ett	75-112	
		(Fa)	thickness (um)	ranking (VDI scale)	R_a (10 ⁻⁵ µm)	macroparticles per unit area (149% mm ²)	macroparticle diametsr (um)	Hoics drifted	Standard deviation	Holes	Standard deviation
	Unceated TIN-I TIN-II TIN-III TIN-III TIN-IV	- 01 033 05 12	1.3 1.2 1.0 1.0		116 114 110 104	2.8 2.4 2.1 1.5		12 33 33 38 46	4 24 22 29 17	20 47 48 52 57	8 32 33 46 21
		Vacuu	ım Depos	ition Tech	nologies f	or films and coati	ings. Sevilla,	17-20	February 2014.		

